Intra-household Selection into Migration : Evidence from a Matched Sample of Migrants and Origin Households in Senegal

> Isabelle Chort (Université Paris Dauphine, DIAL) Jean-Noël Senne (PSE, DIAL)

> > MAFE Conference 12-14 december 2012

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

- Who migrates? Migrant selection is most often modelled as resulting from an individual decision
 - Based on wage differentials between origin and destination countries
- But migration has been studied as a household strategy, especially in developing countries
 - Importance of remittances in the resources of the sending household
- Is migrant selection based on a household decision different from individual self-selection ?
 - Portfolio allocation : potential trade-off between migrants' expected gains at destination and the share of it that will come to the household through remittances

<ロ> (日) (日) (日) (日) (日)

Objectives of the paper

- Extend the Roy model of selection to a household based migration decision (similar to portfolio allocation)
 - Roy (1951), Borjas (1987), extended to multiple locations by Dahl (2002), all consistent with individual location decisions (Harris and Todaro, 1970; Sjaastad, 1962)
- Address the issue of intra-household selection : who migrates within the household ?
 - In line with the New Economics of Migration : mobility choices as household decisions (Stark and Bloom, 1985)
- Empirical application using survey data on a matched sample of migrants and their origin households (MIDDAS)
 - Counterfactual income of migrants, had they not migrated, based on characteristics of non-migrant members of migrant households : account for unobservable characteristics at the household level

・ロト ・回ト ・ヨト ・ヨト

A household selection model for migration

- Intuition : the household is a portfolio of members, allocated depending on their return (expected income) and risk (of not remitting) at each location
- Household level additively separable utility function : with I potential migrant members within the household and J possible locations, the random utility of household h having a migrant i in country j writes :

$$U_{hij} = \alpha y_h + \beta (y_{ij} - r_{ij}) + \gamma r_{ij} + z'_{hi} \delta_j + \epsilon_{hij}$$
(1)

- ► y_h : total log home earnings of remaining household members
- y_{ij} : log earnings of migrant i in country j
- r_{ij} : log amount of remittances to household h of migrant i in country j
- z_{hi} : vector of individual and/or household characteristics
- \blacktriangleright Which component mostly drives allocation decision ? Estimation of weights α , β and γ

・ロン ・四 と ・ ヨ と ・ ヨ と

Allocation choice

- Household chooses among I × J alternatives the geographical allocation of its members that maximizes its collective utility
- ▶ Household *h* decides to locate member *i* in country *j* if :

$$U_{hij} = max(U_{h11}, ..., U_{h1J}, ..., U_{hI1}, ..., U_{hIJ})$$

Household level selection equations :

$$M_{hij} = \left\{ egin{array}{ccc} 1 & ext{if} & U_{hij} > U_{hkl} & & orall (k,l)
eq (i,j) \ 0 & ext{otherwise} \end{array}
ight.$$

• Interpretation : M_{hij} equals one if alternative $\{ij\}$ is chosen and observed

Estimation

- Objective : estimate the set of structural parameters (α, β, γ, δ_j) in equation 1 (different weights on incomes and remittances in the household utility function)
- Identification issues :
 - Earnings and remittances are only observed at one location for each household member
 - Households choosing a specific utility-maximizing geographical allocation are not a random subsample of the population
- Earnings and remittances in other locations must be imputed, accounting for observed and unobserved individual and household characteristics driving location choices

< ロ > < 同 > < 回 > < 回 > < 回 > <

Econometric challenges

- Households are not of equal size : the pool of potential migrant members is not the same in all households
 - Number of allocation choices $I \times J$ varies across households
- Estimate a conditional logit model with a varying number of alternatives (clogitVNA) across observations
 - Marketing models : Berry, Levinsohn, and Pakes (2004); Allenby and Rossi (1998).
 - Elections : Yamamoto (2012)

5 possible allocation choices

Alternative 1 : {i1 migrates, i2, i3, i4, i5 stay in Senegal}

Alternative 1 : {i1 migrates, i2, i3, i4, i5 stay in Senegal}

Alternative 2 : {i2 migrates, i1, i3, i4, i5 stay in Senegal}

- Alternative 1 : {i1 migrates, i2, i3, i4, i5 stay in Senegal}
- Alternative 2 : {i2 migrates, i1, i3, i4, i5 stay in Senegal}
- Alternative 3 : {i3 migrates, i1, i2, i4, i5 stay in Senegal}

- Alternative 1 : {i1 migrates, i2, i3, i4, i5 stay in Senegal}
- Alternative 2 : {i2 migrates, i1, i3, i4, i5 stay in Senegal}
- Alternative 3 : {i3 migrates, i1, i2, i4, i5 stay in Senegal}
- Alternative 4 : {i4 migrates, i1, i2, i3, i5 stay in Senegal}

- Alternative 1 : {i1 migrates, i2, i3, i4, i5 stay in Senegal}
- Alternative 2 : {i2 migrates, i1, i3, i4, i5 stay in Senegal}
- Alternative 3 : {i3 migrates, i1, i2, i4, i5 stay in Senegal}
- Alternative 4 : {i4 migrates, i1, i2, i3, i5 stay in Senegal}
- Alternative 5 : {i5 migrates, i1, i2, i3, i4 stay in Senegal}

- ▶ 5 household members : 5 possible allocation choices
- ▶ N household members : N possible allocation choices
- The number of alternatives varies across households

3 steps

- 1. Estimate a conditional logit model with a varying number of alternatives (clogitVNA) for selection into locations at the household level
 - Reduced form selection equation
- 2. Use results from step 1 to correct for endogenous selection in individual earnings and remittances equations and compute unconditional average earnings and remittance predictions, for each individual at each possible location.
 - Individual Mincer-type earnings and remittances equations
 - Instruments : precipitations interacted with individual characteristics (gender, age, education)
 - Household home earnings = sum of individual earnings of remaining working members
- 3. Using results from step 2, estimate a structural conditional logit model to recover the set of parameters
 - Identification relies on instruments affecting earnings/remittances but not location choices.

・ロン ・四 と ・ ヨ と ・ ヨ と

Data

- MIDDAS : Surveys among Senegalese migrants in France, Italy, Mauritania, Côte d'Ivoire and their origin household in Senegal.
- Over 300 migrants surveyed in each destination country in 2009 and 2010
 - Use of census data to approach representativeness of migrant samples
- Origin households tracking in Senegal in 2009 and 2010 (except for Côte d'Ivoire)
 - 35,3% matching rate
 - 326 migrant-household pairs
- Rainfall data taken from the Climatic Research Unit of University of East Anglia
 - Gridded dataset : definition 0.5 degree
- Sample representativeness is assessed at three different stages

<ロ> (日) (日) (日) (日) (日)

Data

Descriptive statistics : Individual characteristics by location

	Senegal	France	Italy	Mauritania
	(1)	(2)	(3)	(4)
Age	33.9	36.9	35.9	35.8
Gender (%)				
Male	42.6	75.7	77.2	63.6
Female	57.4	24.3	22.8	36.4
Schooling level (%)				
No schooling	40.4	18.0	10.9	40.6
Primary	28.4	18.0	12.3	29.4
Middle School	14.2	16.3	25.2	16.7
High School and more	17.0	47.7	51.7	13.3
Marital status (%)				
Single	39.6	37.3	22.5	27.2
Married	52.7	47.7	70.2	60.6
Divorced	4.1	13.7	6.3	8.4
Widowed	3.6	1.3	1.0	3.8
Labour status (%)				
Unemployed/Non-working	48.1	25.7	29.5	17.0
Working	51.9	74.3	70.5	83.0
Monthly earnings (XOF/euros/MRO)	66 552.8	1 281.4	1 163.2	52 531.8
Monthly earnings (PPP)	216.7	$1\ 408.1$	1 368.5	367.4
Monthly remittances (XOF)	(/)	$125 \ 209.9$	$130 \ 637.0$	36 928
Monthly remittances (PPP)	(/)	407.7	425.3	120.2
Observations	1,929	300	302	324

・ロト ・回ト ・ヨト ・ヨト

Estimation

- Step 1 : selection at the household level (who migrates within the household?)
 - Conditional logit with a varying number of alternatives (clogitVNA) of location and member choice (who migrates where ?)
- Step 2 : counterfactual earnings and remittances (accounting for selection into migration)
 - Mincer-type equations for earnings in all 4 countries and remittances for the 3 destinations including correction terms from step 1
- Step 3 : recover structural parameters of the household utility function
 - Estimate coefficients on log-earnings/remittances in the structural household model of location choices.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Step 1 : Household selection equation (reduced form)

	clogit (1)	clogit (2)
Male	1.146^{***} (0.147)	1.266^{***} (0.178)
Age	0.401^{***} (0.042)	0.456^{***} (0.048)
Age squared	-0.005^{***} (0.001)	-0.005^{***} (0.001)
Elementary school	$\begin{array}{c} 0.320 \\ (0.211) \end{array}$	$\begin{array}{c} 0.319 \\ (0.216) \end{array}$
Middle school	1.107^{***} (0.240)	1.098^{***} (0.250)
High school and more	1.660^{***} (0.250)	1.979^{***} (0.295)
Rain zscore x male		0.353^{*} (0.208)
Rain zscore x age		$\begin{array}{c} 0.0478^{***} \\ (0.010) \end{array}$
Rain zscore x high school		0.687^{**} (0.303)
Observations	2225	2159
Rain zscore variables joint significance (χ^2)		24.51^{***} (0.000)

Chort, Senne (DIAL)

2 13 dec 2012 19 / 24

イロン イロン イヨン イヨン

Results

Estimation

- Step 1 : selection at the household level (who migrates within the household?)
 - Conditional logit with a varying number of alternatives (clogitVNA) of location and member choice (who migrates where ?)
- Step 2 : counterfactual earnings and remittances (accounting for selection into migration)
 - Mincer-type equations for earnings in all 4 countries and remittances for the 3 destinations including correction terms from step 1
- Step 3 : recover structural parameters of the household utility function
 - Estimate coefficients on log-earnings/remittances in the structural household model of location choices.

(日) (周) (王) (王)

Step 2 : Earnings/Remittances equations

Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Male 0.616^{***} 0.620^{***} 0.426^{***} 0.426^{***} 0.017^{***} 0.001^{***} 0.001^{***} 0.001^{***} 0.078^{***} 0.033^{***} 0.0420^{***} Age 0.087^{***} 0.020^{***} 0.020^{**} 0.078^{***} 0.0313 0.0606 Age squared -0.001^{***} -0.001^{***} -0.001^{***} -0.001^{***} 0.000^{***} 0.000^{***} 0.000^{***} 0.000^{***} 0.000^{***} 0.000^{***} 0.000^{***} 0.001^{***} 0.001^{***} 0.000^{***}		Home ea	rnings	Destination earnings		Remittances	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Uncorrected	Corrected	Uncorrected	Corrected	Uncorrected	Corrected
Age $0.087^{***}_{(0.019)}$ $0.071^{***}_{(0.029)}$ $0.078^{***}_{(0.030)}$ 0.0333 $0.0606_{(0.051)}$ Age squared $-0.001^{***}_{(0.000)}$ $0.001^{***}_{(0.000)}$ $-0.001_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.0000_{(0.000)}$ $0.000_{(0.000)}$ $0.000_{(0.000)}$ $0.000_{(0.000)}$ $0.000_{(0.000)}$ $0.000_{(0.000)}$ $0.000_{(0.017)}$ $0.000_{(0.23)}$ $0.000_{(0.23)}$ $0.000_{(0.23)}$ $0.000_{(0.23)}$ $0.000_{(0.23)}$ $0.000_{(0.23)}$ $0.000_{(0.23)}$ $0.000_{(0.23)}$ $0.000_{(0.157)}$ $0.000_{(0.157)}$ $0.000_{(0.168)}$ $0.000_0_{(0.157)}$ $0.000_0_{(0.157)}$ $0.000_0_{(0.157)}$ $0.000_0_{(0.158)}$ $0.000_0_{(0.158)}$ $0.000_0_0_{(0.158)}$ $0.000_0_0_{(0.158)}$ $0.000_0_0_{(0.158)}$ $0.000_0_0_{(0.158)}$ $0.000_0_0_{(0.158)}$ 0.010_7 $0.000_0_0_{(0.138)}$ $0.0000_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_0_$	Male	0.616^{***} (0.070)	0.620*** (0.072)	0.426*** (0.089)	0.479^{***} (0.104)	0.305^{*} (0.163)	0.420^{**} (0.165)
Age squared -0.001^{***} -0.001 -0.001^{**} -0.001 -0.011 -0.001 -0.021 -0.011 -0.021 -0.021 -0.021 -0.001 -0.021 -0.001 -0.02	Age	$\begin{array}{c} 0.0872^{***} \\ (0.019) \end{array}$	$\begin{array}{c} 0.0887^{***} \\ (0.017) \end{array}$	0.0571^{**} (0.029)	$\begin{array}{c} 0.0768^{**} \\ (0.030) \end{array}$	$\begin{array}{c} 0.0313 \\ (0.042) \end{array}$	$\begin{array}{c} 0.0606\\ (0.051) \end{array}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Age squared	-0.001*** (0.000)	-0.001*** (0.000)	-0.001 (0.000)	-0.001^{**} (0.000)	-0.004 (0.001)	-0.003 (0.001)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Elementary school	0.115 (0.086)	$\begin{array}{c} 0.111 \\ (0.107) \end{array}$	0.266^{**} (0.104)	0.277^{***} (0.105)	0.144 (0.206)	$\begin{array}{c} 0.154 \\ (0.210) \end{array}$
	Middle school	0.521*** (0.120)	$\begin{array}{c} 0.518^{***} \\ (0.107) \end{array}$	0.263^{**} (0.112)	$\begin{array}{c} 0.321^{***} \\ (0.123) \end{array}$	-0.009 (0.205)	-0.021 (0.221)
	High school and more	1.095^{***} (0.131)	1.104^{***} (0.119)	0.421^{***} (0.114)	$\begin{array}{c} 0.444^{***} \\ (0.115) \end{array}$	$\begin{array}{c} 0.177\\ (0.193) \end{array}$	$\begin{array}{c} 0.180 \\ (0.201) \end{array}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Capital/big cities	$\begin{array}{c} 0.325^{***} \\ (0.091) \end{array}$	$\begin{array}{c} 0.336^{***} \\ (0.089) \end{array}$	-0.069 (0.079)	-0.066 (0.080)	-0.001 (0.149)	-0.002 (0.157)
Resident spouse/child 0.418*** 0.395*** Son/daughter of head 0.107 (0.105*) (0.129) Son/daughter of head -0.041 -0.0673 0.013 0.129 Italy (d) -0.041 -0.0673 0.013 0.192 Mauritania (d) -1.171*** -1.175*** -1.447*** -1.447*** Constant 2.247*** 2.154*** 5.368*** -0.052** -0.052** Selection probability 0.329** -0.358** -2.206** 0.0971) Selection probability 0.239** -0.052** 0.229** -2.348*** (0.002) (0.008) (0.074) (0.974) (0.974) Selection probability 0.239** -0.358** -2.206** (0.002) (0.008) (0.974) 0.244** (0.023) (0.029) (0.098) (0.940) Observations 813 255 255 249 249	Koranic schooling					0.554*** (0.213)	0.507** (0.253)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Resident spouse/child					0.418^{***} (0.155)	0.395^{***} (0.129)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Son/daughter of head					$\begin{array}{c} 0.107\\ (0.148) \end{array}$	0.0908 (0.135)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Italy (d)			-0.0441 (0.090)	-0.0673 (0.108)	0.131 (0.173)	0.129 (0.192)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mauritania (d)			-1.171*** (0.092)	-1.175*** (0.091)	-1.447*** (0.163)	-1.448*** (0.177)
	Constant	2.247*** (0.362)	2.154^{***} (0.329)	5.368^{***} (0.571)	4.856^{***} (0.611)	9.905*** (0.841)	9.683^{***} (0.911)
$ \begin{array}{ccccccc} & (0.109) & (0.294) & (0.974) \\ & (0.052^{**} & 0.20^{**} & 2.343^{**} \\ & (0.023) & (0.098) & (0.940) \\ \end{array} \\ Observations & 813 & 813 & 255 & 255 & 249 & 249 \\ \end{array} $	Selection probability		0.239**		-0.385**		-2.206**
Observations 813 813 255 255 249 249	Selection probability ²		(0.109) -0.052** (0.023)		(0.294) 0.220** (0.098)		(0.974) 2.343** (0.940)
	Observations	813	813	255	255	249	249

E 13 dec 2012 21 / 24

Results

Estimation

- Step 1 : selection at the household level (who migrates within the household?)
 - Conditional logit with a varying number of alternatives (clogitVNA) of location and member choice (who migrates where ?)
- Step 2 : counterfactual earnings and remittances (accounting for selection into migration)
 - Mincer-type equations for earnings in all 4 countries and remittances for the 3 destinations including correction terms from step 1
- Step 3 : recover structural parameters of the household utility function
 - Estimate coefficients on log-earnings/remittances in the structural household model of location choices.

(日) (周) (王) (王)

Step 3 : Household selection equation (structural form)

	clogit
Home earnings	2.585^{*} (1.112)
Destination earnings	-24.59^{***} (2.945)
Remittances	16.36^{***} (2.436)
Observations	2110

イロン イヨン イヨン ・

Conclusion

- Extension of the Roy model to account for household-based migration decisions
- Address the original issue of intra-household selection into migration
- Preliminary results suggest that the within-household selection decision depends on :
 - Expected remittances (from the migrant) positively
 - Expected home earnings (of remaining members) positively
 - Expected earnings abroad (of the migrant) negatively